
 

1 INTRODUCTION 

A commonly employed way to analyse stability of constructions in geomaterials is to compare 
strength and stress state. If the acting stresses exceed the strength, failure is expected. This phe-
nomenological approach bares several limitations. For example, if determining the strength pa-
rameters of rock material, one faces the problem that the values are valid strictly for the applied 
boundary conditions only. Hence, an increase in volume of the tested material usually results in 
a change, i.e. a reduction of strength. This limits the applicability of such data. 

An alternative to the empirical continuum mechanics strength criteria are fracture mechanics 
based approaches. Linear fracture mechanics assumes pre-existing discontinuities in a material 
that act as stress concentrators. The magnitude of stress concentration governs the brittle frac-
ture process. If pre-existing cracks or flaws are propagated by the stresses and coalesce to form 
larger discontinuities, the structures may loose integrity and fail. The mechanistic approaches 
try to mirror the physical origin of the processes and are therefore more exact. 

Based on the principles of fracture mechanics, it is possible to not only assess the stability 
and safety of underground constructions, like caverns, tunnels or boreholes, but also to simulate 
– based on physical principles – the development of fractures in the vicinity of such openings. 
From the simulations the geometry of fracture patterns might be derived and used for different 
aspects, like fluid flow simulations or to estimate the brittle damage in underground construc-
tions. Some software packages are already available, e.g. Fracod2D (Stephansson et al., 2008), 
or under development (Byfut et al., 2009). 

Linear fracture mechanics provides the tools to estimate the stress and displacement fields 
around the tip of a fracture. Cracks or fractures are usually subdivided into three basic types, 
namely Mode I, Mode II and Mode III, based on the crack surface displacement (Lawn, 1993; 
Fig. 1 A). In Mode I, the tensile mode, the crack tip is subject to displacements perpendicular to 
the crack plane. In Mode II the crack faces move relatively to each other in the crack plane. 
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ABSTRACT: The influence of temperature on Mode II fracture toughness was determined us-
ing the Punch-Through Shear with Confining Pressure (PTS\CP) experiment. A total of 30 ex-
periments was carried out and the temperature was varied from 25 to 250°C. Ultrasonic mea-
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150°C and increases slightly by 10% for elevated temperatures. The increase corresponds to the 
onset of thermal microcracking. 
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Shear traction parallels the cracking direction. In Mode III, which is relevant in three-
dimensional analysis only, the shear displacement is acting parallel to the front in the crack 
plane. Any combination of the three basic modes is referred to as mixed mode. The principle of 
superposition is sufficient to describe the most general case of crack tip deformation (Whittaker 
et al., 1992). Loading of a fracture will always result in an alteration of the stresses at the frac-
ture tip. In the theory of fracture mechanics, the stress intensity factor Kk (subscript k indicating 
the mode of loading) is a measure of the grade of stress concentration at the tip of a crack (c.f. 
Fig. 1 B) of effective length a at a given loading and has the dimension of stress · (length)1/2, in 
units MPa√m, (e.g. Atkinson, 1987) 

 

 (1)       

where SA is the applied ‘far-field’ stress. The stress field in front of the fracture at distance r 
is described by Si,j. The fracture toughness KkC is the limit of local stress increase due to an ex-
isting fracture at onset of critical extension. 

Laboratory work in fracture mechanics is mainly based on the determination of the rocks re-
sistance towards fracturing, which is influenced by several boundary conditions, like e.g. water 
content of the rock or temperature. Several studies have analysed the influence of temperature 
on Mode I fracture toughness (Balme et al. 2004, Dwivedi et al. 2000, Nasseri et al. 2007), but 
there is little to no data available on KIIC (Al-Shayea et al. 2000).  

It is reported that Mode I fracture toughness is showing different behaviour for different 
rocks and temperature ranges.  Dwivedi et al. (2000) indicated KIC to increase for several rock 
types with decreasing temperature (+30° to -50°C). They relate this effect to the remaining 
moisture content in the samples. The water freezes and the fracture toughness of the ice adds to 
the one of the rock. Varying the moisture content changes the degree of KIC-variation with tem-
perature change. Meredith & Atkinson (1985) measured KIC on plutonic rocks. For temperatures 
up to 100°C KIC increases slightly for Westerly granite and Black gabbro (Meredith & Atkinson 
op. cit.) and decreases at further elevated temperatures. The increment of KIC at relative low 
temperatures is related to the first thermally induced microcracks. These cracks are relative 
small in number, isolated and with no preferred orientation. They do not enhance the formation 
of a macrocrack; on the contrary they act as arrester to the macrocrack propagation. Therefore, a 
higher energy is needed to overcome this obstacle.  

The closing of pre-existing cracks due to different thermal expansion of grains and an asso-
ciated increasing value of fracture toughness is comprised in the term crack closure toughening. 
Balme et al. (2004) studied this effect on tempered Icelandic basalt containing a high amount of 
pre-existing cracks that seem to be closed at T = 150°C. In the broadest sense, Funatsu et al. 
(2004) experienced crack closure toughening on clay bearing sandstone, too. During heating the 
amount of pore water was considerably decreased, increasing the friction in the rock and, hence, 
increasing KIC by approximately 40% at T = 200°C compared to ambient conditions. So, one 
can argue that, in especially wet rocks, the evaporation of moisture is one of the main conditions 
for crack closure toughening to occur.  

Al-Shayea et al. (2000) studied the fracture toughness under mixed mode loading on a homo-
genous, muddy limestone. They show an increase of 25% and 9% for KIC and KIIC with increas-
ing temperatures up to 120°C. The applied straight-notched Brazilian Disk experiment was used 
for the analysis of KIIC. 

Reopening, coalescence as well as initiation and propagation of grain boundary cracks, due to 
different thermal expansion of grains and the α-β phase transition of quartz at 573°C, reduces 
the fracture toughness in further heating phases considerably (c.f. Nasseri et al. (2007) and Duc-
los & Paquet (1991)). At even higher temperatures intragranular cracks propagate and well-
developed crack arrays form. Consequently, the crack dimensions grow throughout the heating 
process making rock even more vulnerable for fracturing.  

The referred workers used different heating rates, different temperature intervals and experi-
mental set-ups than those applied in this work. No mineralogical alterations or ductile behaviour 
was reported. 

Kk = SA π ⋅ a = Si, j 2π ⋅ r
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2 EXPERIMENTAL RESULTS 

A total of 30 specimens was tested at temperatures from 25°C to 250°C in steps of 25°C. No 
confining pressure was applied to the specimens. Figure 3 A displays the results from the test-
ing. From room temperature up to 150°C, KIIC is roughly constant at 3.4±0.6 MPa√m; for T > 
150°C KIIC increases by approximately 10% to 3.7±0.2 MPa√m. Radial ultrasonic measure-
ments are conducted on specimens prior to and after heating. The difference in p-wave velocity 
(Δvp) increases significantly for T > 150°C. Figure 3 B summarizes the results.  

 

 
Figure 3.  Obtained data from PTS/CP experiment at elevated temperature. Up to 150°C the variation in 
KIIC (A) is attributed to anisotropy. At elevated temperatures randomly distributed thermal microcracks 
increase ∆vp (B) and consequently KIIC.  

 

3 DISCUSSION 

Based on Balme et al. (2004), Figure 4 summarises the general relationship between fracture 
toughness and temperature linked to the microcrack density in the rock. Curve A represents a 
rock, which is subjected to an increasing temperature for the first time (heat treated). From 
theory three competing mechanisms are expected during heating when mesoscopic fracture 
propagating through the rock will interact with the pre-existing and thermally induced micro-
cracks. (A) Generally, the rock resistance towards fracturing decreases when the amount of 
thermally induced cracks increases. (B) An increase of microcrack density at large angles to the 
fracture propagation direction can blunt the fracture tip and act as arrester to the propagation. 
(C) The different thermal expansion of grains may close pre-existing microcracks and streng-
then the material.  
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Curve B in Figure 4 shows the expected response of pre-heat treated material. The processes 
represented by Curve A have partly been performed in a previous heating cycle. The overall 
descending trend of fracture toughness is also favored by the decrease of surface energy and en-
hanced fragile behavior of minerals as they are heated (Darot et al., 1985).  

In between these extremes represented by Curve A and B, rocks represented by Curve C 
might not create new microcracks up to a critical temperature. It is commonly accepted that 
there exists a threshold temperature below which no thermal fracturing is detectable (c.f. Yong 
& Wang, 1980). Its value, however, depends on the composition and fabric of the rock. At high-
er temperatures crack closure toughening or blunting may increase the fracture toughness to a 
maximum value.  

In this study the Mode II fracture toughness and microcrack density, as derived from ultra-
sonic velocities, remain almost constant for T < 150°C. Variation of KIIC can be related to some 
extend to the natural variation of anisotropy direction. KIIC can be expected to vary with orienta-
tion of microcrack density (Nasseri et al., 2008); lower KIIC values in this study are assumed to 
be a product of parallel or subparallel pre-existing microcracks enhancing the Mode II fracture 
propagation and misaligned microcracks lead to higher values of KIIC. As was shown by the ul-
trasonic measurements, the majority of microcracks is orientated in axial direction and the me-
soscopic fracture propagates in direction of the orientation of majority of fractures. It is ex-
pected that the measured KIIC is the lower end of possible KIIC values. The grade of anisotropy 
however does not depend on temperature (Schön, 2004) and can therefore be neglected in the 
context of thermal microcracking. This was true for the measured examples, although the abso-
lute crack densities changed considerably. An influence of thermal expansion of grains closing 
pre-existing fractures is not seen in the measured bulk data at 25°C < T < 150°C. Also the eva-
poration of possible moisture, which seems to be one of the main conditions for crack closure 
toughening to occur, is not evident. 

The number of microcracks is significantly increased for T > 150°C. From that a threshold 
temperature at approximately 150°C is estimated below which no significant thermal micro-
cracking appears (see Figure 4).  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4. Development of fracture toughness linked to the microcrack evolution during heating for a heat
treated rock (Curve A). Curve C represents the results of this study. A likely behavior of a pre-heat 
treated material is given by Curve B.  
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As the threshold temperature is on the upper end of reported threshold values it can be argued 
whether the rock was exposed to temperature cycles previously. Thermal crack damage is as-
sumed to be at its maximum as samples are placed into a pre-heated oven; a discussion of heat-
ing rates is beyond the scope of this study but it was reported that thermal microcracking is 
larger for higher heating rates (Yong & Wang, 1980). The change in ultrasonic velocity in radial 
direction at above 150°C is attributed to the development of randomly distributed microcracks. 
Instead of enhancing the passage of the shear-loaded fracture, they act as arrester and a higher 
energy is needed to overcome this obstacle, hence, KIIC increases slightly. The increment of KIIC 
is small but corresponds to the finding of Al-Shayea et al. (2000) that KIIC seems to be less de-
pendent on temperature than KIC. 
 

4 CONCLUSIONS 

A total of 30 Punch-Through Shear with Confining Pressure experiments were carried out on 
fine-grained syeno-granite samples to determine the influence of temperature on Mode II frac-
ture toughness. From the laboratory results and discussion the following conclusions can be 
drawn: 
− It has been shown that the amount of thermally induced microcracks increases significantly 

for T > 150°C. 
− KIIC for the fine-grained granite increases when heated above 150°C. 
− At T > 150°C the effect of blunting is larger than the effect of fracture-parallel microcracks. 
− The difference in ultrasonic velocities prior and after heating proved to be a good indicator to 

the development of thermal microcracks. 
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