
1 INDRODUCTION 
 
In this paper, flow through a single rock fracture is analysed through the development of a Lat-
tice Boltzmann (LB) fluid model.  Laboratory scale and in-situ testing is expensive and not al-
ways possible. Modeling the system allows the study of rock fractures and their role in biore-
mediation to be studied at a potentially faster pace.  Although there is still a need for 
experimental evidence before any generalizations can be made, models allow the intelligent se-
lection of potential experimental systems by trial and error on the computer, not in-situ. 

In an effort to increase the model performance an alternate computer architecture was sought 
out.  For several years, the graphics industry has been building massively parallel architectures 
for solving problems with large data sets.  Today, the traditional graphics hardware is capable 
of performing general purpose computation and has begun to be harnessed by the scientific 
computing field.  The newest Intel Core i7 processor is capable of 102.4 GFLOPS (1 billion 
FLOPS) while modern NVIDIA graphics hardware is cable of performing around 933 GFLOPS 
both with 32-bit accuracy.  Graphics hardware achieves this performance through massive par-
allelization of hardware.  For example some modern graphics hardware have 240 parallel proc-
essors and are able to feed these processors with sufficient memory bandwidth, 141.7 GB/s ver-
sus Intel’s 12.8 GB/s, to keep them busy.  Now these Graphics Processing Units (GPUs) are 
capable of much more than running traditional video games, they are capable of general pur-
pose scientific computing.    NVIDIA has realized that it has a new customer in the field of sci-
entific computing and has developed a new Software Development Kit (SDK) called CUDA 
(Compute Unified Device Architecture) which builds off the C programming language and runs 
on their G80 and newer generation of graphics hardware.  CUDA enabled GPUs are relatively 
inexpensive and great for research on a budget.  This paper presents a LB model implemented 
on such graphics hardware. 
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ABSTRACT: Bioremediation has been accepted as a treatment technique for groundwater con-
tamination in subsurface soils and shows promise for contaminated fractured rock environ-
ments. Biological growth in fractured rock is expected to occur predominantly as biofilms at-
tach to the fracture surfaces. Biofilms in rock fractures are subject to a complex system of 
forces and other phenomenon due to the dynamics of the bulk fluid in which they grow.  In this 
paper, through the applications of computational fluid dynamics (CFD) to rock fractures, where 
the boundaries are rough and the flow is complex, a precise analysis was conducted of the in-
teraction of a fluid flow and the rock fracture.  Specifically, hydraulic parameters and velocity 
profiles of an actual rock fracture were calculated and compared to a fracture of equivalent ap-
erture.  From the analysis it is clear that it is important to use more complex models such as the 
Lattice Boltzmann Method used is this paper to describe fracture flow.   
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Lattice Boltzmann Methods (LBM) are discrete in time and space where many cells are used 
to allow the emergent behaviours of fluids to be observed.  The discrete grids can easily be split 
up and distributed to many processors.  Furthermore, it is the local nature of LBM that allows 
them to be effectively parallelized, since only next-neighbour communication is required, over-
head is minimized.  The GPU, which is also parallel in nature and is a perfect match to these 
types of models.  Previous work has shown that an increase of an order of magnitude can be 
expected when implementing methods such as the LB approach on the GPU (Tolke 2008, Bai-
ley et al. 2009).   
 This paper presents a two dimensional LBM code implemented on the GPU.  It is the inten-
tion to move forward in the next paper with the inclusion of a biofilm model using cellular 
automata (CA).  This will create a biofilm-fluid interaction model.  Therefore consideration to 
the boundary between the two models is of utmost importance.  Since both models have roots in 
CA, and are both discrete in nature, the grids of both models will have to be the same scale to 
simplify calculations between models.  During a simulation as heterogeneous colonies of bacte-
ria grow outwards from the surface they are expected to extend past the viscous sub-layer 
where they will be subject to shearing and pressure gradients simulated by the LB model.  
Likewise, the fluid will have to move around the biofilm, reducing the effective hydraulic aper-
ture and causing recirculation.  These dynamic fluid phenomena could cause biofilm streamers 
as seen experimentally by Stoodley et al. (1998).  Detachment mechanisms have also been theo-
rized to occur due to shear stresses applied to the biofilm by the fluid.  CFD models such as the 
LB method developed here would be able to determine shear distributions through careful 
treatment of velocity and density profiles.  

2 BACKGROUND 
 
Lattice Boltzmann Methods are types of numerical methods for solving CFD problems.  Other 
types of CFD start with the Navier-Stokes equations, which govern the macroscopic movement of 
fluids, then discretize to get a solution to a system of PDEs (Eker & Akin 2006).  In the LBM 
model the microscopic interaction of particles on a grid and the averaging of those interactions 
emerge into the macroscopic continuum of a fluid.  These interactions include two main steps: 
streaming and collision.  The streaming step is a translation of particles from one node on the grid 
to the next.  The collision step conserves momentum by redirection of particles which ‘collide’ or 
occupy the same node. 
 Originally, when CA methods applied to fluid dynamics, the Lattice Gas Automata (LGA) 
methods were developed.  LGA methods are discrete in space, time and particle velocity.  The 
first hexagonal grid, with 7 particle velocities, was developed by Frisch et al. in 1986.  This model 
consisted of a lattice for which each node at 6 vertices connected to other nodes.  The seventh par-
ticle velocity came from the stationary case, or zero velocity.  In Frisch’s model, there could be ei-
ther 0 or 1 particle at any given node moving, or streaming, in any direction.  The collision step 
would occur when more than one particle would occupy the same node.  The collision rules would 
conserver mass, momentum and energy before and after each collision. 
 LBM evolved from LGA to address some of its short-comings, the primary one being the Boo-
lean treatment of particles at a node.  Instead, LB methods use a particle distribution function to 
describe the nodal velocities (Martys 2007).  In two dimensions, nine velocity directions ei  where 
i = 0,1,2...8 are sufficient to describe a continuum fluid.  Each node has 8 vertices and eo  repre-
sents a particle at rest.  The naming convention used for LBM is DdQq, where d represents the 
dimension and q represents the velocities (Sukop & Thorne 2005).  In this case the model would 
be D2Q9 for a two dimensional lattice using nine velocities.  The velocities vary such that each 
particle may travel one lattice unit (lu) each time step (ts). 
 The velocity distribution function, f, represents the frequency of a particle occurring in any of 
the nice discrete velocities.  The frequencies correspond to the density of fluid in any given direc-
tion.  Therefore one can derive the macroscopic fluid density to be the sum of all the velocity dis-
tribution functions (Sukop & Thorne 2005) as shown in Equation 1. 
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 Similarly, Equation 2 shows the macroscopic velocity u is an average of all the discrete veloci-
ties weighted by the velocity distribution function, f, or their probability densities (Sukop & 
Thorne 2005). 
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 Using Equation 1 and 2 the microscopic quantities can be related to the desired macroscopic 
velocity.  The streaming and collision step now has to be considered with more complexity than 
was done with the LGA method.  The streaming is done in a similar method, a translation of parti-
cles, however the collision rules are replaced with a continuous function.  A popular collision 
function is the Bhatnagar-Gross-Krook (BGK) relaxation term in Equation 3 (Sukop & Thorne 
2005).  The velocity distribution function tends to the equilibrium distribution according to the 
BGK collision term (Wagner 2005).   
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where fi
eq is the local equilibrium value for the velocity distribution function in the direction of 

link ei and varies depending on the lattice used.  In the BGK model, the fluid tends towards equi-
librium at a rate governed by the relaxation term, τ (Latt 2008a).  The BGK collision operator ex-
pressed above along with the streaming step, which is a discretization of the Boltzmann equation, 
is one of the simplest forms of the a LBM and is given in Equation 4: 
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where x represents the position and t represents time.  The function fi(x,t) is the original distribu-
tion function at time t and fi(x+eiΔt,t+Δt) is the distribution function at time t+Δt.  Over that time, 
a LB particle has moved a distance of eiΔt or to the next node in the direction of ei (Brewster 
2007).  The equilibrium distribution function used in the BGK collision term is described by 
Eqution 5. 
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where wi are weights (4/9 for i=0, 1/9 for i =1,2,3,4 and 1/36 for i =5,6,7,8) and c is the lattice 
speed which has a value of unity for simple implementations (Sukop & Thorne 2005). 
 LBM are essentially explicit finite difference approximations of the Boltzmann equation and 
using a Chapman-Enskog expansion, the Navier-Stokes equations for incompressible flow can be 
recovered (Eker & Akin 2006).  The LBM are typically 1st order accurate in time and 2nd order ac-
curate in space depending on the implementation of the collision term (Tolke 2008).  
 LBM methods, which originate from a CA structure, are efficiently parallelized in computer 
programming due to the locality of the discretization.  Each node is only concerned with its direct 
neighbours and therefore when the lattice is distributed to parallel processors the only required 
communication is at the sub-lattice boundaries (Martys 2002). 

3 MODEL IMPLEMENTATION 
3.1 Lattice Boltzmann Method 
The model created is a 2D LBM using a BGK collision operator as previously discussed and 
summarised in Equation 6: 
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where the left hand side of the equation represents the streaming step and the right hand side 
represents the collision step.   
 The model runs the LBM as a general purpose GPU (GPGPU) program through the CUDA 
API.  Real-time visualization is also run on the GPU using OpenGL.  The model was based on 
similar techniques found in Latt (2008a), Sukop & Thorne (2005) and Tolke (2008). 
 One of the drawbacks of GPU implementations is the limitation to 32 bit floating point pre-
cision.  Current hardware has limited support for double or 64 bit precision calculations and 
when used, most of the performance benefit of using the GPU is lost.  Without double precision 
calculations, numerical dissipation is likely occurring in the model being presented.  Numerical 
dissipation is the artificial dissipation of momentum in the fluid due to numerical error.  Since 
the LBM is essentially a finite difference approximation to the Boltzmann equation, it is subject 
to the same numerical truncations as other finite difference methods.  The numerical error can 
cause dissipation of the advection term which by definition should be free of dissipation (Zhu et 
al. 2006).  The advection term in the LBM is represented by the streaming step or uniform 
translation of data.  Since the convection term is also treated in the same streaming step by LB 
methods (Yu 2003), the LBM model presented along with other LBM models can run into nu-
merical difficulties.  
 To minimize the potential for numerical instabilities and maintain the second order accuracy 
of the LB method, the model parameters were defined using the method laid out by Jonas Latt 
as part of the OpenLB User Guide (2008).  The process involves selecting physical units then 
converting to lattice units to finally obtain the relaxation parameter τ.  The relaxation parameter 
plays an important role in the collision term of the LBM.  It controls the tendency of the system 
to move towards local equilibrium.  In the literature (Sukop & Thorne 2005), the relaxation pa-
rameter has been found to cause numerical instabilities at values approaching 0.5 from the right 
hand side (τ must be greater than 0.5 for physical viscosities).  The LB model presented is 
slightly more sensitive needing a value closer to 0.6 for stability.  Stable values of τ close to 
unity are preferred for simple implementation of the LBM (Skukop and Thorne 2005) and can 
be found using the method outlined below. 
 In this research water is the physical fluid being simulated with a kinematic viscosity, ν in a 
fracture of width h with physical velocity u.  This leads to an expression for the Reynolds num-
ber in Equation 7. 

ν
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 The dimensionless expression for Reynolds number is then used to convert from the physical 
units of the system to lattice units.  The fracture width is discretized into lattice nodes of length 
δx.  To minimize the slightly compressible nature of the LB methods the constraint in Equation 
8 is used to establish δt. Also, in order to maintain second order accuracy, it can be shown that 
the relationship between δx and δt must follow Equation 9 (Latt 2008b).  The constraints on 
time discretization are shown below: 
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 The lattice viscosity (νL), is calculated based on the discretization of the system and the di-
mensionless Reynolds number.  Finally, the relaxation parameter is calculated according to 
Equation 10 and is kept as close to unity as possible as mentioned previously. 

213 +⋅= Lντ  (10) 
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3.2 Boundary Conditions 
One of the distinct advantages of the LBM comes from its discrete nature.  It is efficient for 
modeling complex geometries (Chen et al. 1994, Eker et al. 2006, Lammers et al. 2006, Brew-
ster 2007) which arises in the analysis of rock fractures.  A Boolean array is stored to set the 
value of any point in the LB grid to represent either a fluid cell or a solid boundary.  At the 
solid boundaries, a no-slip condition is used to create zero velocity at the boundary surface.  A 
different set of collision equations are used as described by Succi (2001) and are referred to as 
mid-plane bounceback boundary conditions.  The name arises from the applied boundary rules.  
Particles entering a boundary at time t are sent back out with equal magnitude and opposite di-
rection at time t+Δt this effectively puts the boundary at a distance midway between a fluid and 
solid node. 
 Two types of input boundary conditions are used, both being of Von Neumann type.  These 
boundaries set the velocity and density of the first column of nodes within the model, creating a 
constant influx of fluid.  The first input boundary is a constant velocity boundary where all 
nodes in the first column are set to a desired velocity.  This is similar to what occurs at the be-
ginnings of actual rock fractures or in general flow between parallel plates.  Secondly, a 
Poiseuille input velocity profile can also be used.  This describes flow far downstream of any 
inlet or fully developed flow between parallel plates.  The outlet boundary condition is a zero 
gradient condition, which essentially allows the fluid to flow out of the model without effecting 
the upstream flow as long as the outlet is sufficiently downstream of the inlet. 

4 RESULTS 
4.1 Flow Between Parallel Plates 
Before any interesting observations can be made using the LBM model, it is important to first 
ensure that it is correctly modeling incompressible flow.  By comparing the model with analyti-
cal solutions of known flow conditions, some validation of the model can be done.  The first 
flow condition is that of flow between parallel plates.  For laminar flow, the Hagen-Poiseuille 
equation can be used to describe the horizontal velocity through a cross-section.  This analytical 
solution yields a parabolic velocity profile.  The model also creates a parabolic velocity profile, 
however the amplitude of the profile does vary some as shown in Figure 1.  Figure 1 shows a 
selection of horizontal velocity profiles plotting the ratio of velocity (u) to maximum velocity 
(U) at all nodes across the model domain.  The domain is 256 nodes wide by 1024 nodes in 
length (L).    The L/4 profile is almost exactly the same as the Poisseuille profile while the 3L/4 
profile shows a 2% reduction in maximum velocity along the centre line of the system.  This 
could be due to numerical dissipation from the use of single precision calculations. 

 
 
 

 
 

 
 
 
 
 
 
 

 
 
 

 
 

Figure 1. Horizontal velocity profile through a selection of cross-sections developed from a Poiseuille in-
flow boundary condition. 
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Figure 1 was developed using a Poiseuille input velocity profile, but it is also interesting to 

see how long it takes the model to develop the same profile on its own.  In Figure 2 the devel-
opment of the parabolic profile using a constant input velocity is plotted.  In this case L is 2048 
and only 128 vertical nodes are used.  It can be seen that it takes longer to fully develop the 
flow, which is to be expected.  At a distance of 3L/4 or 12 widths the Poiseuille velocity is re-
produced.  Similarly to Figure 1, it can be seen that the further downstream the higher the rela-
tive error, and in this case, at the end of the model domain, a relative error of 4.6% is calcu-
lated.  This is larger than that found in Figure 1 but could be due to the longer domain used for 
Figure 2 leading to further numerical dissipation. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Horizontal velocity profile through a selection of cross-sections developed from a constant in-
flow boundary condition. 
 

4.2 Flow Over a Backward Facing Step 
The next case for comparison is that of flow over a backward facing step.  Typical geometry for 
a backward facing step flow case uses a step height (S) that is half the total height of the sys-
tem, and a length at least 30 times the height which ensures that the outflow boundary condition 
does not affect the flow geometry.  The inlet boundary condition is a constant parabolic veloc-
ity profile and the outlet is a zero-gradient boundary. All other boundaries use standard bounce-
back rules.  This case is well studied but typically at higher Reynolds numbers than is necessary 
for the study of flow in fractures.  Therefore only the results presented by Armaly et al. (1983) 
for Re ≤ 200 are used.  The relationship of the dimensionless Reynolds number is described in 
 Equation 7 where 2h characteristic length for flow between parallel plates, the upstream 
height or step height is used. Next, u is the average inlet velocity and finally, ν is the kinematic 
viscosity of water. 
 Qualitatively, Flow over a backward facing step at Reynolds numbers under 200 consists of 
an area directly after the step of recirculation followed by a reattachment point and finally de-
velopment of a parabolic velocity profile downstream of the step.  The reattachment point re-
fers to the end of the recirculation zone.  Figure 3 also shows this qualitatively, the flow in Fig-
ure 3 is from left to right, blue represents the slowest velocities while red the fastest.  The inlet 
boundary condition is parabolic and the outlet is a constant gradient.  The step height is half of 
the total height and the Reynolds number is 100.  It can be seen that the reattachment length is 
approximately equal to that reported by Armaly et al. (1983) of 3 times the step height and the 
velocity profile becomes parabolic again far downstream. 
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Figure 3. Flow over a backward facing step, Re=100. 
 
 
At higher Reynolds numbers, the model does initially predict the reattachment length as 

found by Armaly et al. (1983) however the simulations quickly become unstable.  The instabil-
ity is due in part to the relaxation parameter in the LBM model which approaches 0.5 for both 
Re=150 and Re=200, at which point the LBM model falls apart numerically.  This is typical of 
LBM BGK models (Sukop & Throne 2005).  Adjustments can be made to the discretization of 
the grid to compensate for the change in relaxation parameter, but it is at the cost of the accu-
racy of the model.  Furthermore, it appears that the constant gradient outflow boundary may 
play a role in shaping the upstream flow also found by Succi (2001).  During simulation, a dis-
tinct shockwave moves backwards from the outflow boundary and changes the geometry of the 
flow over the step. Finally, numerical dissipation due to the use of single precision calculations 
could be the cause of additional errors.    

For the purposes of subsurface water flow in rock fractures Reynolds numbers are typically 
less than one, both model stability and accuracy can be maintained.  Should the model be re-
quired to scale to higher velocities, care would have to be taken with the treatment of the LBM 
model including the use of double precision calculations and improved boundary conditions.  
At low Reynolds numbers, less than one, recirculation zones still occur after a backward facing 
step. This shows that although the flow is laminar, it is not necessarily simple and therefore 
treatment of the flow by an advanced model such as the LBM is appropriate. 

4.3 Flow Through Rock Fractures 
After applying the model to analytical test cases and knowing it performs well for the range of 
Reynolds numbers required, we can extend the model to simulate flows of more complex sys-
tems.  Rock fractures offer complex boundaries which are well suited to the LBM model being 
used.  Fracture data can be input into the model to simply create solid nodes wherever the frac-
ture is found.  Data from one side of a fracture that was collected by Boutt et al. (2006) is used 
in the LBM model.  The data consists of aperture values along a 2D slice through an actual 
fracture, it is measured from a reference datum which was a smooth plate in the case of Boutt et 
al. (2006).  Of interest in this paper is the equivalent aperture of a given rock fracture which is 
used to approximate the complexity of the fracture into one term so that it may be used to cal-
culate the flow through, or the discharge velocity of a fracture.  The Cubic Law was chosen to 
compare against the LBM model. The Cubic Law corresponds to the geometric mean of a given 
fracture aperture data set and is accurate for the purposes of hydraulic calculations (Zheng et al. 
2008).   
 For comparison, the LBM model was run first as flow through the fracture and then as flow 
through parallel plates with a separation equal to the equivalent aperture calculated using the 
geometric mean of the fracture aperture data set.  Table 1 summarizes the fracture parameters, 
discharge velocities and flow predicted by the equivalent fracture and that found from the ac-
tual fracture data, both using the LBM model.  The inlet boundary condition was fully devel-
oped parabolic flow with an average velocity of 0.0002 m/s.  As expected, the geometric mean 
accurately describes hydraulic parameters such as flow rate through a fracture to within 3% in 
the presented model.  
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Table 1. Comparison of the Geometric mean and actual fracture data using LBM model. _________________________________________________________________________________________________ 
           Geometric Mean     Actual Fracture   Relative Error _________________________________________________________________________________________________ 
Overall Aperture: m     3.59 x10-4       2.94 - 4.76 x10-4   -- 
Overall Aperture: Nodes   193         158 - 256     -- 
Outlet Aperture: m     3.59 x10-4       4.76 x10-4     -- 
umax at outlet: m/s     2.92 x10-4       3.01 x10-4     3.0% 
uavg at outlet: m/s      2.00 x10-4       1.50 x10-4     25%  
Flow: m3/s        1.31 x10-13       1.35 x10-13     3.0% _________________________________________________________________________________________________ 
 
 
 More importantly, however, when modeling biofilms or other complex phenomena within a 
rock fracture, it is what occurs inside the model that is interesting, not simply the average flow 
characteristics.  The model offers real insight into the dynamics within the rock fracture, 
whereas the Cubic Law cannot.  Figure 4 plots a selection of velocity profiles through the 
equivalent fracture as well as the actual fracture.  Although the final velocities may be equiva-
lent as seen in Table 1, at various locations through the fracture the velocity profiles differ sig-
nificantly.  The future research this paper is working towards requires more fine grained analy-
sis of these velocities throughout the system in order to better quantify the effect on biofilms 
that may be present in the fracture.    
 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

Figure 4.  A selection of velocity profiles of the actual aperture compared to the equivalent geometric 
mean aperture boundary velocity profile. 
 
 
 Figure 5 compares the results from the two separate simulations discussed above.  The left 
hand side of Figure 5 consists of a rock fracture along the base of the model with a no-slip 
smooth top boundary, constant gradient outlet and parabolic inlet boundaries.  The right hand 
side of Figure 5 models flow through parallel plates spaced at an equivalent aperture calculated 
using geometric mean of the fracture data.  It can be seen that the actual rock fracture com-
presses the velocity profile much more than that of the equivalent fracture.  It is the peaks of the 
rock fracture that significantly change the velocity distribution, leading to an apparently smaller 
equivalent aperture than that found by the geometric mean which corresponds to the Cubic Law 
aperture.  The flow distribution is clearly different from that predicted by simple parallel plates 
and although it cannot be seen in Figure 5, there are areas of recirculation downstream of each 
fracture constriction.  How this would affect a biofilm or perhaps nutrient concentration is 
poorly understood and the subject of future research.  Since this is a complex phenomenon, it 

Equivalent Geometric 
Mean Aperture Boundary 
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would be difficult to create a single variable that could adjust for such effects.  Rather, it is im-
portant that a given system be simulated with a model of equal complexity such as the pre-
sented LBM model. 
 

Figure 5. On the left: Flow through a fracture.  On the right: Flow through parallel plates with the geomet-
ric mean aperture equivalent to the actual aperture on the left. 

5 DISCUSSIONS & CONCLUSIONS 

Performance of the LBM on the GPU is much faster, roughly an order of magnitude, than a 
comparable LB model running on a CPU, consistent with the findings of Tolke (2008a).  It is 
the hope of this paper to lend insight into the various computer architectures that are available 
to engineers for high performance computing.  It is possible for any researcher to now harness 
tremendous computing power.  While the GPU is used for general computation in this research 
it is also used for real-time visualization.  The model developed for this paper is well suited for 
simulating laminar flows through simple systems like parallel plates, and more complex system 
such as rock fractures.  It can model internal flow dynamics that are lost to other types of flow 
approximation like the Cubic Law because it takes into account the complex boundaries that 
arise in rock fractures.  Even in laminar flow, recirculation occurs, creating potentially interest-
ing phenomenon for the interaction of biofilms in those areas leading to exiting future research 
into this area. 
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