
1 INTRODUCTION 
 
Numerous models have been proposed to describe the mechanical behavior of rough joints. 

One of the earliest models for peak shear strength is Patton’s (1966), which is based on the basic 
mechanics of either sliding up the asperity or shearing through the asperity, depending on the 
normal stress level. Similar models were proposed later providing a curved transition from dila-
tion to shearing, including Ladanyi’s (1970) and Jaeger’s empirical model (1971). More com-
plicated models appeared later, which relate the roughness angle with the normal stress, includ-
ing Schneider’s (1976), Barton’s empirical model (1977), and Plesha’s theoretical model 
(1987). Other models relating roughness to different parameters have been proposed; including 
models based on statistical parameters, such as Reeves (1985), models based on fractal analysis 
such as Lee’s (1990) and Kulatilake’s (1995), and models based on three-dimensional surface 
parameters, including Grasselli’s (2003) and Belem’s models (2007). Among all models pro-
posed, Barton’s criterion is the one most widely used in practice. Such model and most of the 
above joint models are focused on the peak shear strength.  

Extrapolation of the mechanical behavior of lab-scale joint samples to large-scale surfaces in 
the field has also been the subject of numerous investigations. Various authors have reported 
scale effects on the shear strength of joints. Pratt (1974), Bandis (1980) and Hencher (1993) ob-
served a reduction in peak shear strength with increasing joint size. However, other authors, in-
cluding Leal-Gomez (2003) and Fardin (2003) have presented cases showing the opposite beha-
vior.  

In practice, the mechanical behavior of rock joints in the field is often estimated on the basis 
of parameters determined on small joint samples, which are either scaled or assumed to be re-
tained through scale magnifications. Such approaches are based on the assumption that the 
geometry of large-scale irregularities, not present in the lab sample, is in some way related to 
the geometry of small-scale irregularities present in the lab sample. However, these geometries 

Constitutive model for small rock joint samples in the lab and 
large rock joint surfaces in the field 

R. E. Barbosa 
EngSolutions, Inc., Ft. Lauderdale, Florida, USA 

 

ABSTRACT: A new constitutive model for rock joints is proposed for predicting the mechani-
cal behavior of both small joint samples in the lab and large joint surfaces in the field. The nor-
mal and shear behavior of joints samples is predicted based on the strength and geometry of 
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scale asperities, determined from lab data, and the geometry of field-scale waviness determined 
from geologic observations. The concept of available shear strength is introduced to describe the 
degradation of asperities and the shape of the mobilized shear stress-displacement curve.  Dila-
tion and roughness degradation during shear is correlated to a dimensionless product of shear 
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ing any scaling procedures, the behavior of joints in the field is predicted by applying the model 
for lab samples to the actual contact areas developed in large-scale joint surfaces.  
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are not necessarily related as they are often determined by completely different factors.  The 
roughness profile of a natural joint in granite for instance is determined by the size and distribu-
tion of the rock-forming grain minerals, while the large-scale waviness profile is determined by 
the geologic or tectonic process that created the joint. 

In the proposed model, the behavior of rock joints in the field is determined based on the 
strength and geometry of small-scale joint roughness determined from lab data, and the geome-
try of field-scale waviness determined from geologic observations. The proposed model is not a 
new shear strength criterion suitable for hand calculations such as limit equilibrium analysis. It 
is a complete fully incremental model that allows predicting the normal and shear behavior of 
unfilled joints subjected to general non-monotonic unidirectional loading, suitable for numerical 
analysis, including finite element analyses and discrete element analyses. 

2 ASPERITY DEGRADATION 
 
Asperities are damaged during shearing, which results in a progressive reduction of the effective 
asperity angle. Damage to asperities involves various mechanisms including wearing, grinding, 
breaking and crushing. Observations on sheared samples reveal that the extent of the degrada-
tion depends on various factors. Greater degradation occurs for larger shear displacements, 
higher normal stresses, lower strength of asperities, and for joints with sharper and smaller as-
perities.   

Various models have been proposed to describe roughness degradation. Barton (1982) devel-
oped the concept of mobilized roughness so that shear stress-displacement curves could be 
modeled, normalizing the degradation of roughness.  Based on his shear strength criterion, a 
mobilized joint roughness coefficient (JRC) is computed along all points of the shear displace-
ment plot and both the JRCmob and displacement are normalized to peak values.  The model is 
used as a table of normalized JRC versus normalized displacement values.  

Plesha (1987) proposed an exponential degradation of the asperity angle α, as follows: 
pcWe−= 0αα  (1) 

where α0 = initial asperity angle, c = degradation constant, Wp = plastic work done in shear = 
Σ τ.dδs

p, τ = shear stress,  δs
p= plastic displacement. 

Various authors have investigated experimentally Plesha’s model, which is theoretically 
complete and highly adaptable to numerical implementation. Hutson and Dowing (1990) pro-
posed an equation for the degradation constant. Huang et al (1993) validated the model for saw-
tooth joints. Lee et al (2001) proposed extended versions of the model for cyclic loading.  Oh 
(2005) evaluated existing equations for the degradation constant, and proposed an equation that 
accounts for the size and strength of the asperity and fits well experimental data on replicas of 
natural joints. 

3 PARAMETERS OF THE PROPOSED MODEL 

The main parameters of the proposed model are as follows. The basic friction is characterized 
by the residual friction angle φr. Lab-scale asperities are characterized by the initial average as-
perity angle α0, asperity wavelength λ, and the asperity compressive strength σc.  Field-scale 
waviness is characterized by the initial average waviness angle i0 and the waviness wavelength 
λw. 

 
 
Figure 1. Parameters of proposed model.  

ROCKENG09: Proceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto, May 2009 (Ed: M.Diederichs and G.Grasselli)

PAPER 5000 2



4 SHEAR BEHAVIOR 
 
The shear stress-displacement curve generated by the proposed model includes 3 stages, illu-
strated in Fig. 2: (1) mobilization of basic shear, (2) mobilization of peak strength, and (3) mo-
bilization of residual strength.  

 
Fig. 2. Available shear strength-displacement, mobilized shear stress-displacement and dilation curves of 
proposed model 

In order to describe the shape of the shear stress-displacement curve, the concept of available 
shear strength is introduced. Available shear strength is the strength the joint would have at any 
stage if there were no additional degradation (i.e. shear strength for current joint geometry).  

In a deformation controlled direct shear test on a joint sample the basic friction is mobilized 
first. This initial stage is assumed to be elastic. The shear stress is mobilized as a function of the 
joint shear stiffness (Ksi). The displacement required to mobilize the full basic friction (σ tan φr) 
is the elastic displacement δs

e. In this stage, there is no degradation. Hence the available shear 
strength is equal to σ tan (φr+α0).  

After the elastic region, the joint starts to slide over the asperities, initiating degradation and 
dilation. The shear displacements at this stage are plastic displacements. As the mobilized shear 
increases, asperities get damaged, the average asperity angle decreases, and hence, the available 
shear strength decreases. The peak strength is reached when the mobilized shear becomes equal 
to the available shear strength. 

 After the peak, the mobilized shear stress continues being equal to the available strength, 
which continues to degrade.  

In both the pre-peak and the post-peak plastic zones the vertical displacement can be com-
puted incrementally based on the plastic shear-displacement and the dilation angle. The dilation 
angle is computed as fraction D of the mobilized asperity angle. The factor D is around 0.5 as 
observed by Barton (1982) and Oh (2005). 

4.1 Proposed degradation model 
In the proposed incremental degradation model, the decrement in asperity angle dα, produced 
when a joint with a current asperity angle α, under a shear stress τ, undergoes an incremental 
sliding displacement dδs

p, is 

p
s

c

dd δτα
σλ
κα ..
.

−=  (2) 

where, κ is a fitting constant. For higher normal stresses a larger shear stress is required to pro-
duce sliding. Thus, according to Eq. (2) rough joints with small and weak asperities subject to 
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high normal stresses degrade faster. For replicas of various naturals joints used to validate the 
proposed model, κ was found to be in the range 10 to 15.  

For monotonic loading, integration of Eq (2) yields equation Eq (1) with c= κ/λ.σc. Hence, 
Plesha’s model is included in the proposed incremental degradation model. 

4.2 Elastic region 
The increment of mobilized shear is computed based on the shear stiffness as e

ssi
K δτ Δ=Δ . . In 

this stage there is neither degradation nor dilation, thus, the decrement in the asperity angle is 
nil. The elastic joint shear stiffness is estimated as 

CK rcsi
φσ tan=  (3) 

where C is a fitting constant that varies between 0.7 mm (replicas on hard material σc > 80 MPa) 
and 4 mm (joint models on soft material σc = 2 MPa) 

4.2 Pre-peak plastic region 
The increment of mobilized shear is computed using a tangent shear stiffness as p

stK δτ Δ=Δ . . 
The decrement in the asperity angle is computed using the proposed degradation law as 

p
smobavailc δταλσκα Δ−=Δ .../ . The increment of normal displacement is computed based on the di-

lation angle, which is taken as a fraction of the mobilized asperity angle, i.e. 
)tan(. mob

p
sn Dαδδ Δ=Δ . 

Updated mobilized shear stress and available shear strength are computed as follows: 

rmobmob

old
mobmob

φστα

τττ

−=

Δ+=
− )(tan 1

        
)tan( availravail

old
availavail

αφστ
ααα

+=
Δ+=  (4) 

The tangent joint shear stiffness is determined assuming a hyperbolic shear stress-relation in the 
pre-peak plastic region, thus: 

2)1( availmobfst RKK
i

ττ−=  (5) 
where Rf, the ratio between the actual available strength and the asymptotic (hyperbolic) 
strength, varies between 0.7 and 0.9. 

4.3 Post-peak softening region 

In this region the available shear strength is fully mobilized. The decrement in the asperity angle 
and incremental normal displacements are computed as above, the updated available shear 
strength is )tan( availravail αφστ +=  and updated mobilized shear τmob = τavail. 

5 NORMAL LOADING BEHAVIOR 

Various authors have investigated the deformation of joints under normal loading. A notable 
work is the extensive experimental program conducted by Bandis et al (1983), which included 
numerous loading/unloading and repeated load cycling tests on a wide variety of fresh and wea-
thered joints in different rock types. Based on their test data, they proposed a hyperbolic equa-
tion to describe the normal stress-closure curves of rock joints, which in incremental form is 
written as follows: 

n
nmcn

n
nn d

K
Kd

i

i
δ

σδ
σ

σ
2

1
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−=  (6) 

where, Kni = initial normal stiffness and δmc = maximum joint closure. The above hyperbolic 
normal stress-join closure relation is used in the present model and procedures are proposed to 
determine the equation parameters. 

ROCKENG09: Proceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto, May 2009 (Ed: M.Diederichs and G.Grasselli)

PAPER 5000 4



 
Fig. 3. Normal- stress-closure curves for rock joints 

5.1 Maximum joint closure 
Comparing the stress-deformation relation of rough joints and smooth joints with similar joint 
compressive strength, as illustrated in Fig. 3, it is observed that the maximum closure of rough 
joints is greater than that of smooth joints.  If compression tests are not available, it seems rea-
sonable to assume that the maximum closure could be estimated as a fraction of the amplitude 
of asperities, A. Therefore, it is proposed to estimate the maximum closure as follows: 

0tan.. αλδ fmc =  (6) 

For the first loading cycle (virgin compression) of interlocked joints, the factor f is about 0.1 
for fresh joints and about 0.2 for weathered joints. In general, f depends on σc and the loading 
history. 

Using Bandis et al (1983) data, the variation of f with σc was obtained for virgin loading (f1), 
reloading (fr) and unloading (fu), as shown in Fig. 4. The points for high values of σc correspond 
to fresh joints while the points for low σc values are for weathered joints. For the same joint 
geometry, during virgin loading, a smaller δmc is reached for stronger asperities. For unloading 
and reloading, the factor f is practically independent of the strength of asperities. Thus, the fac-
tor f can be estimated as shown in Fig. 4.  

 
 
Fig. 4. Fitting parameter f. (1:Fresh dolerite, 2:fresh slate, 3: fresh limestone, 4: weathered slate, 
5:weathered siltstone, 6: weathered limestone) 
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5.2 Initial normal stiffness 
When a normal stress σn is applied to a rock joint, the tips of the asperities crush and deform 
plastically until a contact area ac is developed such that the contact stress becomes equal to the 
compressive strength of the asperity σc. 

Fig. 5.Development of contact area during normal loading and contact area for a paraboloidal asperity 
 

The contact area at the tip of the asperity is cnca ησλσ 2= , where, η is the ratio between the 
number of asperities in contact and the total number of asperities. A relation between the defor-
mation and the contact area can be obtained based on the shape of the asperity. For instance, for 
a paraboloidal asperity the area of contact after a penetration δ is απλδ tan4=ca . Combin-
ing these two equations yields the following normal stress-closure relation: 

n
c

n δ
αλ

ηπσ
σ

tan4
=  (7) 

During normal compression of rock joints, as the normal displacement δn is increased, the ratio 
η increases as new asperities get into contact, and the average angle α decreases as asperities get 
crushed, which produce the nonlinear stress-closure relation. Differentiating Eq. (7) yields the 
following equation for the initial normal stiffness Kni: 

mc

c
oni fK

δ
σ

ηπ
4=  (8) 

If 2D triangular asperities are considered instead of 3D paraboloidal asperities, an equation 
similar to Eq. (8) but with a coefficient equal to 2 is obtained.  Thus, for ideal paraboiloidal and 
triangular asperities the normal stiffness is directly proportional to the compressive strength of 
the asperity and inversely proportional to the maximum closure. Therefore, it is proposed to es-
timate the initial normal stiffness for real joints as follows: 

mc

c
niK

δ
σ

Ω
=  (9) 

where, Ω is a fitting parameter. 

 
Fig. 6. Fitting parameter Ω  (1:Fresh dolerite, 2:fresh slate, 3: fresh limestone, 4: fresh sandstone, 5: wea-
thered slate, 6: moderately weathered sandstone, 7:weathered siltstone, 8: weathered limestone, 9: model 
joint) 
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Using Bandis et al (1983) data, the fitting parameter Ω was computed for various joint types and 
degrees of weathering. As shown in Fig. 6 the parameter Ω, which allows computation of the in-
itial normal stiffness, is a function of the strength of the joint material. The points included in 
Fig. 6 include those computed from normal stiffness and maximum closure for:  first loading 
(L1: virgin loading), first unloading (U1), second loading (L2: reloading), second unloading 
(U2), 3rd loading (L3) and 3rd unloading (U3). They all follow the same pattern, which means 
that the product (Kni.δmc) is essentially the same for virgin loading, unloading and reloading. The 
Ω factor can be estimated as follows: 

][64.06.13 MPacσ+−=Ω  12≥  (10) 

5.3 Asperity degradation during normal loading 
While many authors have studied degradation during shear loading, degradation during normal 
loading is rarely discussed. An equation for the decrement of asperity angle can be obtained by 
differentiating the equation for the amplitude of asperities A= ¼ λ tan α.  The decrement of the 
amplitude of asperities is equal to the plastic joint closure, thus:  

p
ndd δ

λ
αα

2cos4
−=  (11) 

The plastic closure during virgin loading is the difference between the total closure and the 
elastic rebound, and it is computed as follows: 

 nu
e
nn

p
n dffddd δδδδ )1( 1−=−=  (12) 

6 FIELD BEHAVIOR 

While available shear strength resistance of lab-scale joint samples include two components, ba-
sic friction and roughness, in the field there is an additional component, the large-scale wavi-
ness. Still, the shear strength in the field is smaller than in the lab. In previous works this beha-
vior has been explained by arguing that in the field the effective asperity angle is smaller than in 
the lab due to ‘scale effects’. However, since the surface texture of the joint is the same in the 
field and in the lab, it is not clear why the roughness is smaller in the lab.  

In the proposed model, the above behavior is explained differently. There are no scale effects 
and the size of the sample is not a significant parameter in the proposed model. It is postulated 
that the initial asperity angle is the same in the lab and in the field. However, due to the pres-
ence of waviness in the field, the asperity angle is degraded much faster, as damage to asperities 
is concentrated in small contact areas, subjected to magnified contact stresses.   

 
Fig. 7. (a) Reduced contact area due to waviness (b) contact area and contact stress-closure relation 

6.1 Contact area ratio 
As illustrated in Fig. 7(a), when shearing is initiated, the joint surface gets mismatched and the 
contact area is reduced significantly. Let a =ratio of contact area to total area, i.e. a = Ac/At 
= ηlc/λw, where η = ratio of number of ‘waves’ in contact to total number of ‘waves’. The con-
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tact stresses can be written in terms of the applied overall stresses and the contact area ratio as 
follows: 

a

a

s
c

n
c

/ττ

σσ

=

=
 (13) 

And, the rate of degradation of asperities becomes 

ap
ss

c

/.. δτα
λσ

κα Δ−=Δ  (14) 

Therefore, for a contact area ratio of about 10%, as observed by Pratt et al (1974), the contact 
stresses are magnified by a factor of 10 and the degradation rate becomes 10 times faster.   

In the proposed model, the behavior in the field is determined by applying to the contact area, 
the behavior observed in the lab. Based on the contact area ratio, a, the applied overall normal 
stresses are transformed into contact stresses, and mobilized shear stresses occurring at the con-
tacts are translated into overall stresses using Eq. (13).  

An equation for the contact area ratio, for a contact point on the waviness profile with radius 
of curvature Rw, illustrated in Fig. 7(b), can be obtained based on the normal stress-closure rela-
tion at the contact, by assuming a parabolic distribution of the normal deformation δn

c.  
If a linear normal stress-closure defined by a normal stiffness Kni is assumed, equilibrium 

yields: 

 
w
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Thus, the contact area ratio a = Ac/At , is given by 
3

2
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If a more realistic hyperbolic normal stress-closure relation at the contact is assumed, the fol-
lowing cubic equation for the contact area ratio is obtained: 

2

2
23 6

2 λ
ησ

δ
σ

ni

wn

mcni

n

K
R

K
aa =+   (17) 

The waviness angle i, and the radius of curvature Rw, vary along the waviness profile. For a per-
fect sinusoidal profile, the initial point of contact would be the point at which the waviness an-
gle is maximum. However, for a more realistic profile as that illustrated in Fig. 7, the initial 
point of contact at some ‘waves’ would be near the point where the waviness angle is equal to 
the average value (io) while for other ‘waves’ the point may be below this point and for other 
‘waves’ the initial contact may be above it.  In this study, for computing the initial contact area 
ratio, it is assumed that on the average, the initial point of contact occurs at the point in the pro-
file where the waviness angle is equal to the average waviness angle. The radius of curvature at 
such location is Rw= 0.13 λw/tan io.  

6.2 Contact parameter η 

The parameter η in Eq. (15) is not important in the field where there are numerous ‘waves’ thus 
it can be assumed to be equal to 1.0. However, in most experimental programs conducted to 
study scale effects, where the number of ‘waves’ varies between 1 and 3, the η parameter be-
comes important. This parameter reflects the relative concentration of stresses at contacts, and it 
explains inverse scale effects that have been observed (e.g. Leal Gomez 2003, Fardin 2003).  
Consider a 90 cm rock joint with waviness wavelength λw = 30 cm, from which replicas of dif-
ferent lengths are prepared and sheared as shown in Fig. 8. For a 36 cm sample there are two 
contact points and η=2/(36/30) = 1.66. For a 45 cm sample, there are also two contact points 
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and η=2/(45/30) = 1.33. For the same overall normal stress, contact stresses in the 45-cm long 
sample are larger, thus degradation is faster and the resulting shear strength is smaller. For a 70 
cm-long there are still only 2 contacts, thus for the same overall normal stress even larger con-
tact stresses would develop and lower shear strength would be obtained (η=0.85).  Next, if the 
length of the sample were increased to 75 cm, there would be 3 contacts. For the same overall 
normal stress the contact stresses would be smaller than those for the 70-cm long sample, result-
ing in slower degradation and larger shear strength (η=1.20). Thus it is not the length of the 
sample per se what produces the  ‘scale effects’ but the relative concentration of stresses, which 
is measured by the parameter η. 

 
 
Fig. 8. Contact parameter η 

6.3 Open joints 
Rock mass failures often occur along joints that are under low normal stresses and have opened 
and mismatched. The strength of those open joints is between that of a tightly closed joint and 
that of a completely dislocated joint. Interlocking and thus strength is larger for the locked joint 
because the initial effective waviness angle is larger, the contact parameter η is larger, the effec-
tive radius of curvature at the contact point is larger, and thus the contact area ratio is larger. 

 
Fig. 9. Contact ratio for open joints 

  
An equivalent initial shear displacement value can be computed based on the joint aperture, in 
order to interpolate for initial values of contact area ratio and waviness angle, as illustrated in 
Fig. 9, by assuming a sinusoidal waviness profile. The equivalent initial shearing displacement 
is computed as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

0
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n

w
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s

λ
δ

λ
δ

π  (18) 

6.4 Shear stress displacement curve 
The shear stress-displacement curve for a large joint surface in the field includes the same three 
regions defined for a small sample in the lab: elastic region, pre-peak region and post-peak plas-
tic region. The proposed lab-scale model is applied to the contact area and contact stresses are 
converted to overall values, using Eq. (13), to determine the field stress-displacement curve in 
these regions. Thus, for the elastic region, as basic friction is mobilized, if the applied overall 
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normal stress is σn, the normal stress at the contact would be σn
c=σn /ao. The increment of mobi-

lized shear stress at the contact is Δτc = Ks.Δδs, hence the overall increment of mobilized shear 
stress would be Δτ = ao.Ks.Δδ.  Therefore, the equivalent shear stiffness in the field is equal to 

sofield KaK .=  (19) 

 
Fig. 10. Available and mobilized friction angle Vs. shear displacement for large joint surfaces in the field 

 
In the pre-peak and post-peak plastic regions, the joint slides over the asperities at small contact 
areas, degrading them and dilating as the contact point climbs up the waviness, producing some 
degradation to the waviness, and reaching points on the profile with lower effective waviness 
angle, which reduces de contact area ratio. Degradation of asperities is computed as follows: 

p
savail a

c
δταα λσ

κ Δ−=Δ ./..  (20) 

Thus degradation of asperities in the field goes much faster than in the lab due to the factor 1/a. 
A similar degradation law is assumed for waviness and a geometric term is added to reduce the 
effective waviness angle, from the initial average value to 0 after a shear displacement of 0.5λw. 
Thus, 

p
s

ip
savail wcw

ii δδτ λσλ
κ Δ−Δ−=Δ 02...  (21) 

Since the wavelength of waviness is considerable larger than that of asperities and overall 
stresses are significantly smaller than contact stresses, degradation of waviness is minimal as 
compared to degradation of asperities, even after adding the geometrical term.  

Under constant normal stress, the contact area ratio changes during shear displacement as il-
lustrated in Fig. 9, from an initial value ai to an ultimate value au for the fully dislocated confi-
guration. The change of contact area ratio due to changes in normal stress is determined from 
the partial derivative of Eq. (17). Thus Δa is computed as follows: 

n
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ui ap
s
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σ
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σδ Δ

+

−
Ω

−Δ−=Δ
3

)(2
 (22) 

7 APPLICATION EXAMPLES 

The proposed model was verified using experimental data from the literature that provides de-
tailed stress-displacement curves, material parameters and joint profiles.  
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7.1 Simulation of Flaman et al’s test  
Flamand et al (1994) conducted direct shear tests on identical replicas of a natural fracture in 
granite under three normal stresses. The characteristics of the mortar used are φr = 37º and σc = 
82 MPa. The samples are circular 90 mm in diameter. Joint profiles recorded parallel to the 
shear direction are presented in Fig. 11. Based on these profiles the average wavelength of as-
perities was determined to be λ = 3 mm. 

 

 
 

Fig. 11. Comparison between proposed model and test results (experimental data from Flamand, 1994) 
 

Figure 11 shows a comparison between simulation results and experimental results. The initial 
asperity angle α0 = 35º was back calculated from the peak-strength for the test with lowest nor-
mal stress (7 MPa), adding the degradation under shear and that under normal loading. The tests 
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for intermediate and high normal stresses were entirely predicted based on the above four para-
meters. The proposed model provides a very good correlation with the experimental data. 

7.2 Simulation of Bandis’ tests 
Bandis (1980) conducted systematic studies of the scale effects on the shear strength of joints by 
performing direct shear tests on different sized replicas cast from various natural surfaces, in-
cluding full size joints (36 or 40 cm) and joints cut into smaller segments. The model joint com-
pressive strength was σc = 2 MPa, the basic friction angle was φb = 32º and the normal stress for 
all tests was σn = 24.5 Kpa. 
   

 
 
Fig. 12 Comparison between proposed model and test results (experimental data from Bandis, 1980) 

 
Most of Bandis’s tests were simulated in this study and the agreement between the model 

predictions and experimental results was always good. Fig. 12 shows simulation for one of the 
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model joints (Model No 1). Results are presented for joint size 6 cm (Lab) and for joint size 36 
cm (“Field”). Wavelength for both small scale and large-scale irregularities along with waviness 
angle (io) were determined from a set of three surface profiles for each model. Initial asperity 
angle (αo) was back- calculated from the tests results. Figure 13 shows simulation for a second 
model joint (Model No. 2). 

 

 
 
Figure 13. Comparison between proposed model and test results (experimental data from Bandis, 1980) 
 
Fig. 14 shows the variation of the measured average angle of irregularities with the measuring 
interval for Model 1, as reported by Bandis (1980), along with the initial values (αo, io) that 
match peak strength. This figure suggests that the initial asperity angle can be determined from 
the surface profile by extrapolating the curve of measured angles to a nil measuring interval. 
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Fig. 14. Average angle of irregularities with measuring interval for Bandis’ Model 1 

8 CONCLUSIONS 

A constitutive model was proposed to predict the normal and shear behavior of rock joints in the 
lab. The concept of available shear strength was introduced to describe asperity degradation and 
the shape of the shear stress-displacement curve. A model was proposed to describe the beha-
vior of joints in the field, based on the behavior of small-scale samples and the geometry of 
large scale-waviness. The model does not use any scaling procedures but incorporates the me-
chanical effect of large-scale waviness on the degradation of small-scale asperities. The pro-
posed model can predict both ‘positive’ and ‘negative’ scale effects on large samples with a li-
mited number of large-scale waves, such as those that have been tested by different authors to 
study scale effects.  
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