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BACKGROUND EXPERIMENT METHODOLOGY

The varying stiffness of pre-existing fractures and material |[|[UCS tests were performed on 25 mm diameter | (um/m]

layering can have significant effects on strain measurement of ||Buckinghorse shale samples. Samples were wrapped -

laboratory samples (Bandis et al., 1983; Homand et al., 1993). ||lin shrink tube to retain their shape after failure. A ~300.0

Strain measurement during laboratory testing requires careful [|window was cut in the shrink tube to expose the 7500

placement and critical interpretation to ensure that the material ||surface for DIC pattern application and acquire images

deformation response Is accurately characterized (Abdelaziz ||during testing at 2 Hz. LVDTs were used to measure the -1500.0

and Grasselli, 2021). axial change In sample length during testing. To

Despite careful planning and interpretation, the produced strain [[&ccount for the system compliance, an aluminum 2250.0

data may stil be unexplainable without more detailed |[Sample was used to determine the calibration factor

information about the sample deformation as strain ||that matched the LVDT strain to the strain of a 20 mm 3000.0

measurement methods such as strain gauges and linear virtual extensometer from DIC analysis. Three different

variable differential transformers (LVDTs) lack a comprehensive ||!0ading orientations relative to layering were tested. 3750.0

view of the sample’s mechanical response. To track variation in !

deformation, digital image correlation (DIC) was used to (5 C ! ) ~— 4500.0

measure the strain field of various unconfined compressive S

strength (UCS) tests on Buckinghorse shale. This method of R -5250.0

strain measurement allows for continuous deformation tracking N N k.

over an imaged sample area, providing the ability to see local OOT 45° I 90° I Minor strain DIC o\)erlay*bn the 90° loaded UCS

strain developments that may appear and disappear with time. S S showing significant variation within the 10 mm x
Sample layering orientations and loading directions 15 mm window

YOUNG’S MODULUS POISSON'’S RATIO

To evaluate the effect of layering, virtual extensometers of equal length were | | The effect of layering on the Poisson’s ratio was analyzed by using horizontal
placed sequentially along the centre of the DIC window. Virtual extensometers | |virtual extensometers placed sequentially along the DIC window. Similar to the
of varying lengths were used to assess the effect of increasing measurement| | Young's moduli, the lateral moduli were determined by linear best-fit using
length. The Young’s moduli were determined by linear best-fit using =10% of| Jusing £10% of the curve at 50% of the samples’ strength. The average
the curve at 50% of the samples’ strength (shown as solid black lines on the | | Young’'s moduli measured from the axial virtual extensometers were used for
stress-strain plot). They were then compared between different loading| |the Poisson’s ratio calculation as v = Ey/E; where Ey Is the Young’'s modulus

orientations and extensometer lengths. and E; Is the lateral modulus.
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